

INL/EXT-19-56933

Light Water Reactor Sustainability Program

HERON as a Tool for LWR Market
Interaction in a Deregulated Market

December 2019

U.S. Department of Energy

Office of Nuclear Energy

DISCLAIMER

This information was prepared as an account of work sponsored by an
agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.

INL/EXT-19-56933

HERON as a Tool for LWR Market Interaction in a
Deregulated Market

Paul W. Talbot
Abhinav Gairola
Prerna Prateek
Andrea Alfonsi
Cristian Rabiti

Richard D. Boardman

December 2019

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy

 ii

 iii

ABSTRACT
This document reports the development of HERON (Holistic Energy Resource

Optimization Network), a newly-developed RAVEN (Risk Analysis Virtual ENvironment) plugin
for grid and capacity optimization, to technoeconomic analysis in a deregulated market. A short
description of the HERON plugin is provided, and the release process is described. HERON as a
plugin enables RAVEN to perform stochastic technoeconomic analysis of grid-energy systems in
a generic approach. The primary function of HERON is to generate the complex RAVEN
workflows necessary to optimize component capacities under stochastic systems. HERON is
capable of analyzing systems with complex components transferring a variety of commodities,
including production components and varied markets. HERON is capable of optimizing high-
resolution dispatch for such systems and guiding stochastic optimization algorithms in RAVEN
for finding optimal component capacities. In particular, this document demonstrates the
application of HERON to systems with deregulated markets.

 iv

CONTENTS

FIGURES .. v

TABLES ... v

ACRONYMS ... vi

1. INTRODUCTION ... 7

2. HERON DESCRIPTION ... 8

2.1 Use Cases and Design ... 8

2.2 Capabilities ... 8
2.2.1 Workflow Generation .. 8
2.2.2 Technoeconomic Dispatch .. 12
2.2.3 Example Dispatch .. 13

3. SOFTWARE INFRASTRUCTURE .. 18

3.1 RAVEN Plugin ... 18
3.1.1 Installation ... 18
3.1.2 Plugin Additions .. 18
3.1.3 HERON Structure.. 18

3.2 Version Control and Accessibility .. 21

4. QUALITY ASSURANCE PRACTICES ... 22

4.1 SQA Documentation ... 22

4.2 Regression Testing .. 22
4.2.1 Variable Demand with Fixed Pricing .. 22
4.2.2 Variable Demand with Variable Pricing ... 23
4.2.3 Multiple Markets with Fixed Pricing .. 24

5. DEMONSTRATION CASE .. 25

5.1 Motivation ... 25

5.2 Case Definition ... 25

5.3 Synthetic History Training .. 26

5.4 Case 0: Nominal Case ... 27

5.5 Case 1: Increased Hydrogen Price .. 30

5.6 Case 2: Increased Electricity Price Volatility ... 31

5.7 Case 3: Optimization ... 34

6. CONCLUSIONS AND FUTURE WORK .. 35

6.1 Conclusions ... 35

6.2 Ongoing Work .. 35

7. REFERENCES .. 37

8. APPENDIX: Software Requirements Specification and Traceability Matrix ... 39

9. APPENDIX: Configuration Items List .. 57

 v

FIGURES

Figure 1: HERON's RAVEN-running-RAVEN workflow ... 10

Figure 2: Example HERON Input ... 11

Figure 3: Example of HERON Dispatching results [16] .. 13

Figure 4: HERON Example Branching Scenarios .. 16

Figure 5: Regression Test 1 System .. 23

Figure 6: Regression Test 2 System .. 24

Figure 7: Regression Test 3 System .. 24

Figure 8: PJM 2018 Electricity Prices .. 26

Figure 9: PJM Synthetic Signals Sampled .. 26

Figure 10: CDF comparison for synthetic data ... 27

Figure 11: Example Dispatch Optimization .. 28

Figure 12: Case 0 Sweep Results .. 29

Figure 13: Case 1 Sweep Results .. 30

Figure 14: Case 2 Sweep Results .. 32

Figure 15: High-volatility signal ... 32

Figure 16: Case 3 Optimization Path .. 34

TABLES

Table 1: Fixed Component Dispatch .. 14

Table 2: Example Dispatch 1: Hydrogen Balance .. 15

Table 3: Example Dispatch 2: Electricity Balance ... 15

Table 4: Example Dispatch 3: Full Balance .. 15

Table 5: Deregulated Case Definition ... 25

Table 6: Case 0 Sweep Results ... 29

Table 7: Case 1 Sweep Results ... 30

Table 8: Case 2 Sweep Results ... 32

Table 9: Case 3 Optimization Bounds .. 34

 vi

ACRONYMS

ARMA Auto Regressive Moving Average
APS Arizona Public Service
CAPEX CAPital EXpenditure
CSV Comma-Separated Values
EG Electrical Grid
HERON Holistic Energy Resource Optimization Network
HES Hybrid Energy Systems
HPC High-Performance Computing
IES Integrated Energy Systems
IRR Internal Rate of Return
LCOE Levelized Cost Of Electricity
LMP Locational Marginal Pricing
LWR Light Water Reactor
MACRS Modified Accelerated Cost Recovery System
MWh Megawatt Hour
N-R HES Nuclear-Renewable Hybrid Energy Systems
NPP Nuclear Power Plant
NPV Net Present Value
O&M Operations and Maintenance
PWR Pressurized Water Reactor
RAVEN Risk Analysis Virtual ENvironment
VRE Variable Renewable Energy source
XML eXtensible Markup Language

 7

HERON as a Tool for LWR Market Interaction in a
Deregulated Market

1. INTRODUCTION
This document reports the development of HERON (Holistic Energy Resource Optimization

Network), a newly-developed RAVEN (Risk Analysis Virtual ENvironment) plugin for grid and
capacity optimization, to technoeconomic analysis in a deregulated market. Significant efforts have
been made in recent years [1-7, 9-12, 16] to construct an analysis framework using RAVEN for systems
of energy producers and consumers in a method that allows statistically-meaningful decisions to be
made with regards to the economic viability of energy grid portfolios and configurations. The results of
this effort have shown value both in a theoretical sense [1, 2, 4, 5, 7, 9-12] as well as for specific
applications when paired with industrial partners in the energy space [3, 16]. However, the development
and maintenance of these RAVEN workflows has been burdensome, and often involves complicated
copy-and-modify operations that significantly slow the user experience. Further, a custom optimization
algorithm was required for each configuration of the components in a grid system, further exacerbating
the high bar of entry for using these workflows.

To mitigate these difficulties, HERON has been developed as a plugin of RAVEN. First, with
RAVEN’s recent enhancement to allow automated Templating, HERON can now support inputs that
are more intuitive for grid energy system analysts and generate the complex RAVEN workflows
required in an automated fashion. Second, in an attempt to solve dispatch optimization for generic
systems, HERON provides an algorithm built to handle complex and flexible grid configurations with
nonlinear and unpredictable components. These two features are the cornerstones for HERON’s
software design and requirements.

The development and maintenance of HERON requires clear plans for software design,
capabilities, and quality assurance. Inheriting from the RAVEN software quality assurance
documentation, the infrastructure as well as maintenance and development of HERON are documented
to provide this clear vision.

To demonstrate the efficacy of this new plugin, HERON is applied to a grid configuration
containing an electricity producer, a hydrogen producer, hydrogen storage, an electricity market, and a
hydrogen market. By economically choosing the dispatch of these components given a stochastic price
history, HERON demonstrates the ability to optimize dispatch. By choosing the optimal size of each of
these components, HERON demonstrates the ability to create the complex workflows required for
stochastic technoeconomic analysis.

The remainder of this document proceeds as follows. Section 2 describes the use cases, design, and
capabilities of HERON. Section 3 defines the software infrastructure for HERON, including its
interactions with RAVEN and internal software structure. Section 4 describes the software quality
assurance practices in place to assure HERON’s functional development and defines existing
integration tests. Section 5 defines and demonstrates an example deregulated market system using
HERON. Finally, section 6 summarizes the results of this document and outlines work moving forward.

In two appendixes we append the software quality assurance (SQA) documentation, read from their
PDF form. The first appendix is the combined design, requirements, and traceability matrix. The second
appendix is the configuration items list.

 8

2. HERON DESCRIPTION
HERON is a generic software plugin of RAVEN to perform stochastic technoeconomic analysis of grid
energy-resource systems with economic drivers. The development targets analysis of electricity and
secondary product generation and consumption in regional balancing areas, including flexibility to
include arbitrary resources as well as arbitrary resource consumers and producers. HERON is
developed to drive optimization via economic drivers such as system cost minimization, profitability,
and net present value (NPV) maximization.

As a plugin of RAVEN, HERON provides two primary functions: the automatic generation of RAVEN
workflows, and models for optimizing high-resolution dispatch of arbitrary systems including
resources, resource consumers, and resource producers. HERON leverages the synthetic history training
and generation tools, sampling workflows, code Application Programming Interfaces (API), and
optimization schemes.

2.1 Use Cases and Design
HERON is designed to analyze systems of resources, resource producers, and resource consumers

in an economic fashion, using characteristic technical features as constraints. Resources can be
commodities such as electricity, natural gas, or hydrogen, or more abstract concepts such as wind
speed, solar irradiation, or pressure. Resource producers are units that produce one or more resources,
such as a nuclear power plant producing steam and electricity or fleet of solar panels producing heat
and electricity. Resource consumers can be producers of other resources, such as a natural gas power
plant consuming gas to produce electricity, or a sink such as a residential sector consuming power or a
hydrogen demand market buying hydrogen. Further, HERON models storage units that can act
sometimes as consumers and sometimes as producers, depending on the system configuration and
status. HERON performs analysis of systems at both an intra-year dispatch resolution and over multiple
consecutive years.

For parlance, HERON tracks resources as commodities that flow between components.
Components may be consumers, producers, or storage units; however, each component represents a
single transaction (such as producing, consuming, or producing in order to consume). A single unit that
has multiple transaction possibilities can be represented as multiple components.

The two primary use cases for HERON include system analysis under a regulated market system,
and under a deregulated market system. In a regulated market system, a governing body takes
ownership of all components and resources within a system and attempts to minimize system cost. In
this manner, the operation of each component in the system is optimized for the benefit of the system in
order to meet some required behavior such as disposing or providing a quantity of resource. In a
deregulated market system, generally the requirement is not present, and the system is optimized for the
most profitable configuration.

For example, power plants in a regulated system may be required to provide power to meet the
demand of a local residential sector at the lowest possible cost. Power plants in a deregulated system
choose when to provide power based on the prices offered in the energy market.

2.2 Capabilities
HERON provides two major functions: generation of RAVEN workflows for stochastic

technoeconomic analysis; and dispatch models for optimal component operation given technical
constraints and economic drivers.

2.2.1 Workflow Generation

HERON’s primary utility is simplifying the creation of complex RAVEN workflows for grid-based
stochastic technoeconomic analysis. In the past [1, 3] these workflows were created manually, often
with significant difficulty for the user due to the interconnected and complex nature of the inputs.
Instead, HERON provides a surrogate input via RAVEN’s Templating system. HERON’s input uses

 9

terminology common to economic and energy system analysts, in contrast to RAVEN’s input which
uses terminology more common to statisticians and code analysts.

The fundamental RAVEN workflow is represented in Figure 1. There are two distinct layers in this
workflow, an outer loop and an inner loop. The outer loop encapsulates changes to the sizing of
components; that is, it manages changing the total capacity of components within the system. This
management often takes one of two forms based on the analysis: sweep mode or optimization mode. In
sweep mode, various combinations of component capacities are sampled from in order to obtain an
understanding of how economic metrics change with respect to changes in the component capacities.
This can yield differential or sensitivity results. In optimization mode, the outer loop seeks the cost-
minimizing or profit-maximizing component capacities by exploring the variable space made up of
component capacities.

The inner loop in Figure 1 seeks to determine the statistical behavior of economic metrics given a
particular system configuration, i.e. fixed component capacities. Each inner loop begins with producing
a set of stochastic histories. These histories may include market pricing, weather events, consumer
demand, or any other uncertain phenomenon affecting the system of resources and components. For
example, in analyzing a system of power plants regulated to meet demand, the demand from residential
and commercial consumers may be represented as a stochastic process with seasonal behaviors.
Similarly, when considering a system with wind power farms, the windspeed could be represented by a
stochastic history. Once a realization of the stochastic elements is obtained, an optimization of
component dispatch is performed to minimize cost or maximize profit of the system. This can be done
with one of HERON’s provided dispatching algorithms, or another can be supplied in its place. This is
discussed further in Section 2.2.2. Finally, once an optimal dispatch is obtained for a given realization
of the stochastic histories, a final economic determination is made for the economic metric of choice;
for example, NPV, IRR, or PI. This single value for the economic metric may be considered one
independent sample of the system selected in the outer loop. Many more samples are often needed for
statistical convergence. Each sample begins with producing an independent realization of the synthetic
histories, determining an optimal dispatch for those histories, then obtaining an economic determination
for that realization.

The mathematical expression for the optimization process is given in [2] as follows:

𝑀 min
⃗, ⃗

𝔼 𝑀 𝐶, 𝐷, 𝜔 (1)

where:

 𝑀 is the economic metric of interest and 𝑀 is the optimal value of that metric;

 𝐶 is the set of capacities of the system components;

 𝐷 is the optimal dispatch of the capacities for a given realization 𝜔;

 𝔼 is the expected value operator over realizations 𝜔; and

 𝜔 represents a single set of evaluations of the synthetic time histories.

Note that Equation 1 represents a cost minimization optimization; in the case of profit maximization,
the minimization operator is trivially replaced by a maximization operator.

The algorithmic approach to this two-level problem is as follows:

1. Build a system of components and resources;

2. Select an initial configuration of component capacities;

3. For a predetermined number of desired realizations:

a. Sample a set of synthetic histories;

 10

b. Dispatch components to optimize economic metrics given selected component
capacities and technical constraints;

c. Evaluate economic metrics for the optimal dispatch;

4. Collect statistics for economic metric evaluations;

5. Select a new configuration of component capacities based on statistical economic metric
results;

6. Return to step 3 and repeat until desired convergence (optimal capacities or resolution of
response space).

Figure 1: HERON's RAVEN-running-RAVEN workflow

An example of the format for the HERON input file is given in Figure 2. It structure is eXtensible
Markup Language (XML). Under the root node there are three primary portions: “Case”, in which the
global problem is established including the type of analysis to perform and general economics;
“Components”, which define the technical and economic drivers for the system components; and
“DataGenerators”, which define the sources from which external data will be obtained, such as Python
functions and synthetic history generation (e.g. ARMA).

Mean
Economic

Metrics

Stochastic opt.
or

Sensitivity analysis

Synthetic
time

histories

Economic
Analysis

Optimal
dispatch

Statistical
Treatment

New
Grid

System

 11

Figure 2: Example HERON Input

 12

2.2.2 Technoeconomic Dispatch

Once a system configuration including resources and components is constructed, a particular set of
component capacities is selected, and a realization of stochastic time series is obtained, HERON seeks
to optimally dispatch the resources and components to meet system requirements and obtain the most
desirable economic metric possible. There are several approaches to this dispatch optimization. ReEDS
(Regional Energy Deployment System Model, developed at the National Renewable Energy Laboratory
[14]) employs a time-slice approach using several representative days in a year to indicate dispatch
trends as part of its capacity expansion model. While often sufficient to provide indicators for long-term
capacity planning, this slicing approach may miss important technical limitations and behaviors
observed in a higher-resolution time scale necessary for stochastic economic analysis; a higher-
resolution consideration also allows improvements in storage management analysis that is not feasible
in non-contiguous time slicing. EDGAR (Economic Dispatch Genetic AlgoRithms, developed at
Argonne National Laboratory [13]) uses genetic algorithms to perform high-resolution dispatch
optimization; however, its focus on electrical grid dispatch limits the application of the algorithms to
arbitrary systems. However, these and other existing dispatch systems can be used in lieu of HERON’s
provided dispatching system with some code coupling.

The dispatching algorithms provided in HERON are intended to provide generic solvers for
arbitrary systems at high resolution. The currently implemented generic dispatch algorithm leverages
physics-based optimization and zero-finding to balance the system and obtain optimal component usage
through frequent re-evaluation of cost drivers. This allows complex interactions of highly
interdependent components to be optimized. This dispatch approach requires the user to provide
transfer functions for components, describing the resource utilization that allows a component to
consume or produce a resource. These transfer functions are written in Python [15] and allow
extraordinary flexibility by providing access to the full system state at evaluation time. As such, these
transfer functions can implement complex technical operation constraints. Because the high level of
time resolution is maintained, the behavior of storage units is modeled on contiguous time, allowing
increased fidelity in storage dispatching.

The genericity of HERON’s nominal dispatcher comes at a cost, however. The continuous
evaluation of the cost of particular system states takes notable computational effort, which results in a
simulation that can be too slow to be practically used for many stochastic evaluations. To mitigate this,
if a user knows the decision breakpoints for particular optimal system configurations, a Python-written
dispatcher can be provided that solves optimal dispatch much more rapidly by limiting the number of
evaluations and scenarios to be considered.

In the future, it is anticipated that additional dispatchers for HERON will be implemented to
accommodate faster performance at the cost of complete genericity. For example, a dispatch
optimization based on marginal dispatch, where the marginal cost of producing additional resources is
assumed to be constant throughout the system evaluation, could potentially outperform the generic
dispatcher significantly by drastically reducing the number of requisite cost evaluations.

An example of HERON dispatching results is provided in [16] and reproduced here in Figure 3. In
this case, there are two resources tracked, electricity and hydrogen. There are 5 components: an
electricity source (BOP), a hydrogen production facility (HTSE) that consumes electricity to make
hydrogen, an electricity market (Electric_Grid) that consumes electricity, a hydrogen storage unit
(H2_storage), and a constant hydrogen consumer (H2_market1). The graphs in Figure 3 show the
operation of each unit in terms of electricity (top), hydrogen (middle), and storage as well as price of
electricity (bottom). When electricity is sufficiently cheap, selling to the grid is not practical, so excess
hydrogen is produced and stored. When electricity is sufficiently expensive, hydrogen is taken from
storage to supply the hydrogen consumer so that all electricity produced can be sold at the grid. This
performance in the three-day window shown suggests the general dispatch optimization results that can
be expected from HERON’s dispatching process.

 13

Figure 3: Example of HERON Dispatching results [16]

2.2.3 Example Dispatch

In interest of clarifying the process of HERON’s generic dispatcher, we include an example with
step-by-step consideration. In this example we consider the following five units:

 NPP: produces a constant stream of steam (600 units);

 BOP: consumes steam to produce electricity (consumes 10 units steam for 4 units
electricity);

 HTSE: consumes electricity and steam to produce hydrogen (consumes 1 unit steam and 10
units electricity to produce 10 units hydrogen);

 HC: consumes hydrogen at a constant rate;

 Grid: flexibly consumes electricity.

The price of electricity sold at the Grid is given by a synthetic history [9, 10, 11] and changes
for each time step. For this example, we consider on the resolution of the first time step as an
example.

To solve this system, HERON employs a 4-step process for each hour in the simulation:
1. Dispatch fixed components completely.

 14

2. Dispatch component minimum levels.
3. Balance resource utilization in the most economical way possible.
4. If desired, perturb independent sources to increase profit.

We follow this process through the example case. HERON begins by dispatching the fixed

sources. This includes the NPP steam source and the HC hydrogen consumer. HERON updates
its resource tracking table as follows, using positive as producing and negative as consuming
for convention:

HERON then dispatches the minimum from each component. For instance, if a dependent

or independent component has a ramp rate that limits its output at one hour based on the output
at a previous hour, HERON dispatches the minimum given the ramp at this point. Additionally,
if any independent or dependent component has a minimum production level, HERON
dispatches it at this point as well. In this example case, we assume neither minimums or ramp
rates influence the dispatch.

Once all fixed components are dispatched and the minimums from dependent and
independent components are dispatched, HERON seeks to iteratively balance the resource
utilization in the most economical way possible. It does this by seeking branching solutions to
the existing imbalances. For example, in Table 1 there is an excess of steam and a deficit of
hydrogen. HERON will consider ways to solve the imbalance; for instance, we start with the
deficit of hydrogen. HERON inquires the components to see which can produce hydrogen.
Since the HTSE is the only option, HERON dispatches the HTSE to fully provide the required
hydrogen.

If at any point there is not a viable solution, HERON marks the existing scenario as not
solvable, and considers alternative branching scenarios. If all scenarios fail, HERON will raise
a Python exception (NotSolvableError) to indicate an impossible-to-balance scenario.

For the sake of this example, assume it takes 1 units of steam and 10 units of electricity to
produce 10 units of hydrogen. To balance the deficit of hydrogen, 10 units of steam and 100
units of electricity are consumed in the HTSE. The current scenario updates as in Table 2.

Unit Steam Electricity Hydrogen

NPP 600

BOP

HTSE

HC -100

Grid

Net 600 -100

Table 1: Fixed Component Dispatch

Unit Steam Electricity Hydrogen

NPP 600

 15

Now the hydrogen has been balanced, but now a deficit of electricity has been introduced, and
there is still an excess of steam. To balance the electricity deficit, the BOP consumes steam and
produces electricity:

With the electricity and hydrogen balanced, there remains only to balance the excess steam
production. Following this same process, the BOP is requested to consume the excess steam to
produce electricity, and the excess electricity is sold at the Grid, with a final result as shown in
Table 4:

While this
example is simple, it

demonstrates the balancing behavior of HERON’s generic dispatch optimization. If at any time

BOP

HTSE -10 -100 100

HC -100

Grid

Net 590 0

Table 2: Example Dispatch 1: Hydrogen Balance

Unit Steam Electricity Hydrogen

NPP 600

BOP -250 100

HTSE -10 -100 100

HC -100

Grid

Net 340 0 0

Table 3: Example Dispatch 2: Electricity Balance

Unit Steam Electricity Hydrogen

NPP 600

BOP -590 236

HTSE -10 -100 100

HC -100

Grid -136

Net 0 0 0

Table 4: Example Dispatch 3: Full Balance

 16

multiple components can consume or produce the same resource, HERON will consider the
marginal cost of both scenarios. Notably, HERON does not trivially compare the marginal
dispatch of only perturbing the components that directly support the balance effort, but also the
downstream effects that are required to balance given choosing the component. For example, if
two different components can produce hydrogen to meet a deficit, say one that consumes only
electricity (HE) and one that consumes steam and electricity (HSE), HERON not only
considers the marginal cost of either using the HE or HSE to produce hydrogen, but the cost of
balancing the corresponding steam and/or electricity requirements (HSE). The comparison
between scenarios is not made until a complete balance is made, to provide a fair comparison.
In practice, branches tend to expand and collapse in straightforward manners.

For a branching example, consider Figure 4. In this example, a hydrogen storage has been
added to the example case described above. Each green box represents a possible scenario,
such as the tables above. Branching options from a scenario indicated multiple options to
balance a resource. Only when the bottom level is reached (full balance) is a determination
made between one option and another. For example, on the right branch, scenarios are
generated until HERON can compare between the Market or Storage to consume Hydrogen.
Red circles indicate that a scenario was accepted as the more economically viable, using
marginal cost. Having selected Market, the algorithm moves back up one level and compares
consuming electricity at the Grid or HTSE. Choosing the Grid, the algorithm then compares
consuming steam at the BOP or the HTSE. All the choices downstream of the HTSE choice
need to be made, then the two are compared, and in this example, the HTSE is chosen as the
most economical option to balance steam.

Figure 4: HERON Example Branching Scenarios

While pursuing this balance approach to dispatch optimization, the economic

considerations and available performance of the components are constantly re-evaluated. While
this introduces some computational cost, the benefit is an extraordinarily flexible evaluation
process that allows complex interoperation between components in the system. Each scenario
is tracked independently, so when transfer functions are inquired, the full state of the scenario
in consideration is provided to the transfer function for consideration.

The genericity of this approach incurs a notable computational burden. Significant speed
can be recouped by introducing assumptions. For example, assuming linear marginal costs and
independence of the components would allow a one-time ordering of marginal costs for unit
performance. We consider dispatch optimization algorithms with increased restrictions as

 17

promising future work for HERON. Further, it is often not difficult for a user with Python
experience to write a very efficient algorithm for dispatch that hinges on decision points that
are only discovered implicitly by HERON’s generic algorithm. This allows the fastest practical
dispatch optimization and can greatly accelerate the technoeconomic analysis.

 18

3. SOFTWARE INFRASTRUCTURE

3.1 RAVEN Plugin
HERON is not a stand-alone software; it is a plugin for RAVEN [8]. It requires RAVEN to run

workflows and leverages several functionalities present in RAVEN. In this section the software and
algorithms leveraged from RAVEN are discussed along with the structure of HERON itself.

3.1.1 Installation

As a plugin of RAVEN, HERON is installed as a submodule. RAVEN maintains up-to-date
instructions for plugin installation in its manuals and other documentation. As of this writing, plugins
are installed from the command line from within the top level of the RAVEN repository as

scripts/install_plugins.py ‐s heron

Note that RAVEN must be installed completely to use HERON and its components. At this writing
HERON introduces one additional Python library to the standard set of RAVEN Python dependencies:
dill. The serialization package dill enables information transfer between the HERON templating
algorithm and dispatching algorithm not possible with the standard library set. This library, along with
any future additional libraries required, should be installed correctly via RAVEN’s documented
installation procedure for including plugins.

HERON also requires use of the RAVEN plugin CashFlow [12], a utility for economic analysis.
As of this writing, CashFlow is an officially supported plugin for RAVEN and is installed standard
when plugins are included in RAVEN installation.

3.1.2 Plugin Additions

As a plugin of RAVEN, HERON currently provides External Models and Templates. The External
Models are the dispatch algorithms included in HERON. The Templates are the tools needed to create
the complex outer-inner RAVEN workflows to perform the technoeconomic analyses that are within
HERON’s scope. While RAVEN contains the base classes for both External Models and Templates,
HERON maintains the specific implementations for its applications within its code repository.

3.1.3 HERON Structure

In accordance with RAVEN’s requirements for plugins, the HERON repository consists of three
main directories. The “src” folder contains the algorithms and software to perform its scope of work.
The “doc” folder contains user manuals, design documents, quality assurance documentation, and any
other documentation for the use, development, and maintenance of HERON. The “tests” folder contains
regression tests to assure the acceptable performance of HERON to meet its software design description
and associated use cases.

The software framework of HERON, contained in its “src” folder, contains an object-oriented
framework as well as a driving executable. These are contained in Python modules that are described in
the next several sections. Specific instructions for available options and their use are contained in the
HERON user manual in the “doc” folder.

3.1.3.1 Cases

Cases describe the general simulations to be performed by HERON. It allows selecting options such
as whether to perform sweep or opt calculations on the outer loop, the economic metrics of interest, the
number of inner samples to take per outer iteration, and so forth. It also allows specification of
economic factors such as the length of time to consider in evaluation as well as discount rates, tax rates,
and inflation rates. In this way, a Case contains the general information about the simulation.

3.1.3.2 Components

Components describe the passage and utilization of resources within the HERON simulation. Each
component is comprised of two parts: a technical definition, and an economic definition. The technical

 19

definition depends on the activity of a unit. For example, a Component’s activity can be “produces” if it
either consumes one resource to produce another or simply yields a resource, “demands” if it only
consumes a resource, or “stores” if it is meant to act as a storage for a particular resource.

Each Component also indicates its place within the dispatch optimization. A Component with
“independent” dispatch may be freely perturbed by HERON when it seeks to take profitable action. For
example, if there is excess steam during computation, HERON will consider all Components with
“independent” dispatch who consume steam as viable solutions to absorb the excess. Components with
“dependent” dispatch cannot directly be controlled by HERON but may operate flexibly to respond to
changes in other “independent” Components. For example, if increasing steam consumption in an
“independent” Component results in excess electricity, a “dependent” Component who consumes
electricity may be considered as a candidate to absorb it. Finally, “fixed” dispatch Components always
perform exactly at their capacity. A “fixed” Component that “demands” always demands a consistent
quantity of resource and may not be adjusted by HERON to balance resource usage, while a “fixed”
component that “produces” always provides a consistent quantity of resource and may not be adjusted
by HERON.

In additional nodes within the activity description can specify the capacity of the Component, the
transfer function for unit operation, minimum production levels, and such. The units for all Component
descriptions is assumed to be a rate; that is, a Component who “produces” steam with a capacity of 100
is assumed to produces 100 units of steam per time interval. The specific units are not specified; the
burden of consistent unit usage is on the user. However, if a Component “stores” a resource, it assumes
units of capacity are given in quantity, not rate. For example, a Component that “stores” steam with a
capacity of 100 is assumed to be able to hold up to 100 units of steam at one time (not 100 units per
time interval). Note that each value-based entry (capacity, minimum, etc) is specified through a
ValuedParam option (see Section 3.1.3.6).

After specifying the activity of a component, an “economics” node is used to declare the economic
interactions of the component. These are specified by defining “CashFlow” nodes, corollaries to those
found in the CashFlow [12] plugin of RAVEN. Each CashFlow node is specified as a “one-time” type
or “repeating” type, corresponding to capital investments and regular transactions respectively. Each of
the elements of the CashFlow (driver, reference price, reference driver, and scaling factor) is specified
as a ValuedParam (see Section 3.1.3.6).

3.1.3.3 DispatchScenario

Dispatch Scenarios are tools internal to HERON for considering diverging options in dispatch
optimization. When performing dispatch and finding multiple suitable options for increasing
profitability or balancing resource, HERON will create a Dispatch Scenario for each option, inheriting
the initial state from the Scenario before it and choosing one action or the other. This allows a broad
tree of actions to be considered, allowing HERON dispatchers to select the most optimal scenario given
complete resolution of the possibilities. The process for spawning and collapsing these scenarios is
discussed further in Section 2.2.2. Dispatch Scenarios are used exclusively within HERON and are not
directly accessible to the user via API.

3.1.3.4 Placeholders

Many of the activities of Components in a simulation may be governed by generated synthetic
histories or functional evaluations that are not possible to evaluate when writing the HERON input but
become available at run time. To accommodate these input placeholders, a class of Placeholders was
implemented with specific definitions for both synthetic history (ARMA) and Python function
(Function) objects. In the HERON input file, a section is reserved for “DataGenerators” in which
RAVEN synthetic history generators and Python function modules can be indicated for use within the
simulation. These are then used within the ValuedParams system (see Section 3.1.3.6) to provide
placeholder values evaluated at run time.

 20

3.1.3.5 Economics

To encapsulate the economic attributes of Components separate from the activities they perform,
the Economics class exists to provide tools to track and interact with the CashFlow plugin. These read
in the “economics” parts of the HERON input in both Cases and Components. They also hold the
algorithms to write the full CashFlow inputs once a particular Dispatch Scenario is selected for a time
interval.

3.1.3.6 ValuedParams

Because HERON’s generic dispatcher intends to provide an extraordinarily flexible algorithm,
ValuedParams were developed to provide a generic API for input values that could come from a variety
of sources. A ValuedParam input entry has one of the following forms:

 fixed_value, for when a value is a constant float value;

 sweep_values, for discrete values to iterate over in sweep mode;

 opt_bounds, for bounding limits in opt mode;

 ARMA, for evaluating an entry in a synthetic history;

 Function, for obtaining a value from a function;

 variable, for taking a value from RAVEN’s variables.

“fixed_value” takes a single number entry, while both “sweep_values” and “opt_bounds” take a
comma-separated list. “variable” takes the name of a RAVEN variable, while “ARMA” and “Function”
take a description of the synthetic history generator or Python function along with the variable name to
retrieve.

3.1.3.7 dispatch

The “dispatch” module contains the algorithms to carry out generic dispatch under economic
drivers and technical constraints, leveraging the other classes in HERON. It exercises its physics-based
balancing dispatch optimization on successive time windows and steps, selecting the preferable
dispatch scenarios until the simulation is complete. This dispatcher is designed to be compatible with
interpolated, clustered ARMA surrogates trained by RAVEN, solving representative segments and
applying weights to economic factors to approximate full-year simulations. This dispatch algorithm
dynamically constructs objects from the CashFlow plugin and runs economic evaluations.

3.1.3.8 input_loader

The input loader is responsible for reading the HERON XML-based input and providing summary
information about the contents.

3.1.3.9 main

The driver for HERON, main is responsible for engaging the input loader, instantiating HERON
objects based on the user input, and engaging the RAVEN Template system to construct RAVEN
workflows.

3.1.3.10 templates

Inheriting from the RAVEN base Template classes, the structures in the “templates” folder load
existing templates, populate them with the correct names and objects based on the HERON system
loaded by the driver, and write completed workflow files that can be run by RAVEN. More information
about templating can be found in the RAVEN documentation [8].

 21

3.2 Version Control and Accessibility
HERON is currently maintained as a Git repository hosted on INL’s internal GitLab [17]

repository. While not publicly accessible, access can be obtained by applying for and receiving an
account with the INL High Performance Computing (HPC) group. Upon acquiring credentials, INL’s
GitLab repositories can be accessed locally on INL campus or remotely.

As described in the SQA documentation (see Section 4.1), development work is done on
development branches and must undergo review, testing, and approval before being pushed to the
master branch of HERON. This enforces control of issue resolution and feature development.

 22

4. QUALITY ASSURANCE PRACTICES

4.1 SQA Documentation
As a plugin of RAVEN, HERON inherits its Software Quality Assurance (SQA) practices and

documentation from RAVEN. Any deviations from RAVEN’s base SQA are documented in HERON’s
SQA documentation. The documents outlining HERON’s specific SQA are:

 Configuration Items List: The CI List aims to gather Software, Hardware, and Documentation
components of the Project’s infrastructure. These are the items that define the configuration of
the software (see appendix in Section 9).

 Software Design Description: SDD is a document written by Software Designer/Architect to

give other Software Developers an overall guide to the architecture of the software product. It
has an architecture diagram with detailed information on System Purpose and Scope, along
with the Structure of Code and Software. It serves as a reference document outlining all parts
and functionality of the software (see appendix in Section 8).

 Software Requirement Specification: SRS has a complete description of the features and

behavior of the system. The document includes various elements describing Functional,
Usability, Performance, and Minimum requirements of the software. It also captures how the
system interfaces and operates with external applications (see appendix in Section 8).

 Requirement Traceability Matrix: RTM is a document that co-relates user requirements with

test cases to validate the completeness of the software. The parameters included in RTM is the
Requirement ID, the Requirement Description, and the Test Case for verification of every
requirement (see appendix in Section 8).

4.2 Regression Testing
HERON inherits the same regression testing philosophy and framework used by RAVEN; that is,

before any modifications to the code can be merged into the main development branch, a series of
regression tests must be passed to assure behavior has not notably changed; or if it has changed, the
changed behavior is documented and updated as part of the code changes. These regression tests are a
combination of unit tests, which test the performance of individual sub-algorithms within HERON, and
integration tests, which test the ability of HERON to perform as a whole to satisfy particular use cases.
At the time of this writing there are four regressions tests in HERON. These test configurations are all
available in the code repository under heron/tests.

To demonstrate the capability of the software simple and analytically tractable test cases were
needed. Three such cases were designed with a view to demonstrate the capabilities of the software
rather than the practical applicability of the numbers obtained. With this view in mind the following
three scenarios were considered.

4.2.1 Variable Demand with Fixed Pricing

A simple test case was built with a source feeding into a power producer which in turn is feeding
into an electrical grid which has the ability to absorb all the power produced by the producer. For this
test case to work the components in Figure 5 were put together into the Heron input files.

 23

Figure 5: Regression Test 1 System

a) Source: A sinusoidal wave was generated by training an ARMA on a fictitiously generated sine
wave. The result of the training is a perfectly generated deterministic sinusoid.

b) Power Plant: This component was modeled by a transfer function module which essentially
takes the synthetic signal and converts it into a power signal.

c) Electrical grid: This component is a market and is essentially an infinite sink for electricity
produced.

The Net present value (NPV) was selected as a metric. Which is calculated at 20 sampled points. It
was calculated both analytically and through the Heron software package for a period of 2 years. For
this cashflow at each point was calculated as

𝐶𝐹 𝑃𝑜𝑤𝑒𝑟 ∗ 𝑠𝑒𝑙𝑙𝑖𝑛𝑔 𝑝𝑟𝑖𝑐𝑒 𝑖𝑛 $.

NPV was then computed as:

𝑁𝑃𝑉
𝐶𝐹

1 𝑑
 , 𝑦 𝑦𝑒𝑎𝑟𝑠, 𝑑 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑟𝑎𝑡𝑒

where y is the year of project analysis and d is the discount rate. The selling price of electricity used
was $0.1/MW, and the discount rate was 0.08. The analytic result for this configuration is an NPV of
$35.66, which HERON obtains exactly.

4.2.2 Variable Demand with Variable Pricing

A slight tweaking of the first case was attempted where the new market doesn’t have a fixed price,
as in Figure 6.

 24

Figure 6: Regression Test 2 System

The mechanics of this test case is very similar to the first one with a difference that the price of the
electricity in the grid is varying through a sinusoidal curve. The NPV metric was again computed both
analytically and through HERON. The analytic value for the NPV in this configuration is $17.83, which
HERON obtains exactly.

4.2.3 Multiple Markets with Fixed Pricing

A more generic case was designed (Figure 7) with two electrical markets to choose from, in which
the capacity of the better paying market is limited. For this current case the capacity of the better paying
market is set to 1 while the price of electricity is set to $ 10. The available price of electricity in this
additional source of consumption is significantly higher than the default market where the available
price is still $ 0.1. With this the NPV metric was again computed. The analytic value is $388.75, which
HERON computes exactly.

Figure 7: Regression Test 3 System

 25

5. DEMONSTRATION CASE

5.1 Motivation
Technoeconomic analysis of grid energy systems may be classified into two systems: those with

regulated markets, and those with deregulated markets. As mentioned, in a regulated market system, a
governing body takes ownership of all components and resources within a system and attempts to
minimize system cost. In this manner, the operation of each component in the system is optimized for
the benefit of the system in order to meet some required behavior such as disposing or providing a
quantity of resource. In a deregulated market system, generally the requirement is not present, and the
system is optimized for the most profitable configuration.

For example, power plants in a regulated system may be required to provide power to meet the
demand of a local residential sector at the lowest possible cost. Power plants in a deregulated system
choose when to provide power based on the prices offered in the energy market. Since deregulated
markets make up a notable portion of energy markets in the U.S., we demonstrate HERON to such a
case as evidence of its efficacy in these kinds of analyses.

5.2 Case Definition
To demonstrate HERON’s application to deregulated markets, we document a simple case

involving five components:

 A generic power plant (EPP) that produces electricity at a cost;

 A hydrogen production plant (HPP) that consumes electricity to produce hydrogen;

 A hydrogen storage unit (HS) that may receive or provide hydrogen;

 An electric grid (EG) as a selling market for electricity; and

 A hydrogen selling market (HM).

For this case, we hold the EPP at a constant production level. We sweep over the capacity of the
HPP, HS, and HM to understand the economic impacts of changing these parameters. We allow the EG
to be functionally an infinite sink for electricity production. See Table 5 for the specific values used in
the analysis.

Component Consumes Produces Rate Capacity

EPP - MW infinite 1000 MW

HPP MW H2 100 MW per 1 kg/s H2 1, 5, 10 kg/s H2

HS H2 H2 infinite 3.6, 18, 36 1000kg H2

EG MW - Infinite infinite

HM H2 - infinite 1, 5, 10 kg/s H2

Table 5: Deregulated Case Definition

The market price for hydrogen is derived from supply/demand curves in [37], while the price for
electricity is taken stochastically from a RAVEN synthetic history ROM trained on the PJM ISO 2018
electricity price data [38]. Other economic factors are taken from data and figures in [37]. For operating
the hydrogen storage unit, we set the buy threshold to $25/MWh and the sell threshold to $50/MWh,
corresponding to the electricity prices which trigger the storage to acquire or release hydrogen
respectively.

 26

5.3 Synthetic History Training
The Pennsylvania-New Jersey-Maryland Interconnection (PJM), an ISO in the U.S., operates as a

deregulated market. This makes data from this interconnect suitable for training example synthetic
economic data for energy prices. In this demonstration we use the 2018 PJM electricity price data [38],
as shown in Figure 8. Of interesting note, a “bomb cyclone” affected the PJM region in 2018, bringing
very cold temperatures and driving up the demand for electricity.

Figure 8: PJM 2018 Electricity Prices

According to RAVEN’s requirements for synthetic history training, the electricity price was trained
with Fourier modes corresponding to yearly, semiannual, 3-month, day, half-day, 4 hours, and 3 hours
Fourier modes; ARMA (P, Q) values of (2, 1), and segmenting daily with 45 clusters. While we
represent a 20-year project life, we do not vary the mean or distribution of the electricity price from one
year to another. A set of samples imposed on the original training data is given in Figure 9. While there
is room for improvement in the training of this algorithm, it is sufficient for this demonstration case.
The comparison between the cumulative distribution functions of the sampled histories and the original
sample is given in Figure 10.

Figure 9: PJM Synthetic Signals Sampled

 27

Figure 10: CDF comparison for synthetic data

5.4 Case 0: Nominal Case
In the nominal case, HERON performed the sweeping technoeconomic analysis as described above.

The optimal dispatch discovered by HERON is shown in Figure 11for 10 days starting the second week
of January for the case with a HPP capacity of 10 kg/s, a HS capacity of one million kg, and a HM
capacity of 5 kg/s. In these three plots, the top shows the dispatch of electricity, the middle shows the
dispatch of hydrogen, and the bottom combines the electricity price and hydrogen storage level. As
expected, there are three types of behavior, depending on the price of electricity:

 When the price of electricity is high, all available electricity is sold entirely to the EG,
unless insufficient stored hydrogen exists to supply the HM; in that situation, only the
minimum electricity amount to satisfy the user is sent to the HPP to satisfy the HM.

 When the price of electricity is low, all electricity possible is diverted to production and
storage of hydrogen in the HS.

 When the price of electricity is between the battery buy-in and sell-out prices, the
electricity is used at the HPP just sufficiently to satisfy the HM, and the remainder is sold at
the EM.

 28

Figure 11: Example Dispatch Optimization

 29

Figure 12: Case 0 Sweep Results

Table 6: Case 0 Sweep Results

HM size (kg/s) HPP size (kg/s) HS size (1000 kg) mean NPV (B 2018$)

1 1 3.6 2.02
1 1 18 2.01
1 1 36 1.99
5 5 3.6 1.97
5 5 18 1.95
5 5 36 1.94
10 10 3.6 1.65
10 10 18 1.64
10 10 36 1.62
1 5 3.6 1.38
1 5 18 1.38
1 5 36 1.36
5 10 18 1.20
5 10 36 1.20
5 10 3.6 0.94
1 10 3.6 0.61
1 10 18 0.61
1 10 36 0.59

The full results of the stochastic sweep are shown in Figure 12 and Table 6 (sorted by NPV). The
maximum mean NPV is discovered when the HPP, HM, and HS are all small. NPV drops slowly as the
size of the storage increases and drops quickly as the size of the HPP increases. Some of this loss is
recouped as the size of the HM is proportionately increased. The motivation for minimal hydrogen
involvement may be driven by a low profitability of the hydrogen. Additionally, the storage is not
sufficiently enabling the electricity from the EPP to be sold during peaks in the electricity price at the
EG. This may be improved with more volatile electricity pricing. Given these two considerations, we
introduce changes in the following cases to the hydrogen price and electricity price signal to consider
the sensitivity of HERON to these perturbations.

 30

5.5 Case 1: Increased Hydrogen Price
For this case we consider increasing the value of hydrogen across the board by 50%, leaving all other
parameters the same. The results are show in Figure 13 and Table 7. Due to the increase in the value of
hydrogen, the overall NPV is much larger. Additionally, the optimal configuration is to maximize the
production and market size for hydrogen. However, the storage is still not sufficiently motivated; the
optimal configuration minimizes storage size.

Figure 13: Case 1 Sweep Results

Table 7: Case 1 Sweep Results

HM size (kg/s) HPP size (kg/s) HS size (1000 kg) mean NPV (B 2018$)

10 10 3.6 3.27
10 10 18 3.26
10 10 36 3.25
5 5 3.6 2.89
5 5 18 2.88
5 5 36 2.86
1 1 3.6 2.27
1 1 18 2.26
1 1 36 2.24
5 10 18 2.13
5 10 36 2.12
5 10 3.6 1.87
1 5 3.6 1.63
1 5 18 1.62
1 5 36 1.61
1 10 3.6 0.86
1 10 18 0.85
1 10 36 0.84

 31

5.6 Case 2: Increased Electricity Price Volatility
The hydrogen storage (HS) in the proposed system is what enables a deregulated behavior. Since

the hydrogen market (HM) demands a constant stream of hydrogen, the system can only flex to sell
additional electricity to the electricity grid (EG) by taking hydrogen from the HS to satisfy the HM.
This will be most beneficial when there are frequently oscillating periods of low electricity prices,
during which excess hydrogen is produced and stored, and high electricity prices, during which all
electricity is sold at the EG. Also, the hydrogen production plant (HPP) must be sufficiently larger than
the HM so that hydrogen can be stored and enable rerouting electricity from the HPP to the EG during
peak prices. Finally, the HS must be large enough to enable electricity price peak finding.

Case 0 and Case 1 showed no improvement (in fact, slight deterioration) of the NPV as a result of
increasing HS size. The potential benefits of HS sizing appear small compared to the effects of sizing
HPP and HM. To illustrate the sensitivity of the NPV to HS sizing, we select a particular size of HM
and HPP and survey various HS sizes and their resulting NPV. We fix the HPP size at 10 kg/s H2 and
the HM at 5 kg/s. Several samples of the increased-volatility signals are shown in Figure 15. Note that
the prices both peak higher and drop lower than in the original signal (Figure 9).

Figure 15: High-volatility signal

Table 8 and Figure 14 show the results of several different storage sizes and their impact on the
NPV. Additional sampling has been taken near the profitability turning point.

 32

Figure 14: Case 2 Sweep Results

Figure 15: High-volatility signal

Table 8: Case 2 Sweep Results

HS size (hours reserve) HS size (1000 kg) mean NPV (B 2018$)

0 0 1.567
1 18000 1.618
2 36000 1.633

2.25 40500 1.634
2.50 45000 1.635
2.75 49500 1.636

3 54000 1.636
3.25 58500 1.636
3.50 63000 1.634
3.75 67500 1.634

4 72000 1.634
5 90000 1.628
6 108000 1.620

 33

The results indicate there is an expected optimal HS size for a given HPP and HM size. For an HPP
with capacity 10 kg/s and HM with demand of 5 kg/s and given the highly volatile price signal given as
well as the storage buy-sell prices used (25 and 50 $/MW respectively), this optimum appears to be
around 50,000 kg, or 3 hours’ worth of HM demand; that is, the HS at full capacity can deliver the
needs of the HM for nearly 3 hours. We expect this to change critically with the HPP and HM size, the
price signal, and the buy/sell storage threshold prices.

 34

5.7 Case 3: Optimization
Having explored the impacts of volatility and hydrogen pricing on HERON’s performance, we

consider changing from a sweep mode, in which the goal is to understand a response surface, so an
optimization mode, where the goal is to find the maximum mean NPV across the component sizing
domain. HERON leverages RAVEN’s optimization algorithms for this; in this case we use RAVEN’s
SPSA optimization algorithm. We return to the Case 0 conditions for this study. The bounds of the
optimization search are given in Table 9, and the target is maximizing the mean NPV. We constrain the
optimization to only consider points in which the HPP size is at least the HM size.

Table 9: Case 3 Optimization Bounds

Feature HPP size (kg/s) HM size (kg/s) HS size (1000 kg)

Lower bound 0 0 0
Upper bound 2.5 2 27
Initial Point 0.2 0.1 1

Optimal Point 0.33981824 0.31610014 0.999979054

Figure 16 shows the optimization path taken by RAVEN, after the problem was set up

using HERON. The red point is the initial sample point; accepted points are represented as
line-connected dots colored by the mean NPV; and rejected optimization points are shown as
crosses. As can be seen, the optimization improved the mean NPV by roughly one hundred
thousand 2018$ by searching the domain. The optimal sizing was discovered by increasing the
HPP size by 0.14 kg/s, increasing the HM size by 0.216 kg/s, and maintaining the HS size in
85 iterative steps. The optimal point suggests keeping roughly an hour of hydrogen in the HS
storage and having an HPP slightly bigger than the HM.

Figure 16: Case 3 Optimization Path

 35

6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions
This document reports the development of HERON for application to deregulated markets. The

motivation for continuing this novel approach to stochastic technoeconomic analysis has been
discussed, and approaches from similar toolsets have been considered. The software design for HERON
has been presented, including the intended use as a RAVEN workflow generator and dispatch
optimization engine. The process for performing generic technoeconomic dispatch has been outlined,
and potential improvements suggested. Integrating the technoeconomic dispatch within stochastic
optimization as performed by RAVEN has also been discussed.

The internal software design of HERON has also been presented, including its relationship as a
plugin of RAVEN, the new features added including Templates and External Models, and the new
workflows enabled via HERON. The design philosophy and data flow in HERON has been presented,
and the means to access the plugin have been outlined. Additionally, the quality assurance plan for
HERON has been discussed, including software quality assurance practices and documentation. The
initial set of HERON regression tests for continuous integration assurance have been outlined, and their
merit as demonstrate of use cases explained.

Finally, a series of demonstration cases applying to deregulated market analysis have been
examined. Starting with a nominal case connecting a power supplier, a hydrogen producer, hydrogen
storage, an electricity market, and a hydrogen consumer, the effects of changing a variety of parameters
on the behavior of HERON have been considered. Through these demonstration cases, we build
confidence in the use of HERON as a toolset for technoeconomic analysis of grid-energy systems in
deregulated markets.

6.2 Ongoing Work
There are many avenues of exploration still available to the ongoing improvement of stochastic

technoeconomic analyses with HERON and RAVEN. Improvements consist of efficiency increases in
the code as well as expanded regression test coverage and development to address additional test cases.

As noted, the existing generic dispatch is powerful in its ability to handle complex interactions but
limited by its slow operation. Some promising approaches include adding a linear margin-based
dispatcher, which assumes a constant marginal price for components and evaluates them once instead of
at every consideration. This could greatly accelerate the dispatch optimization process. Further, a
decision-point-based generic dispatcher could allow the user to program particular behaviors based on
system evaluation, which could also greatly accelerate the dispatch while maintaining a reasonable level
of genericity.

Further development of HERON is desirable to expand coverage into multi-level markets. For
instance, in many U.S. energy markets the dispatch of electricity is divided into day-ahead hourly
markets and hour-ahead 5-minute markup markets. The day-ahead hourly markets indicate expected
behavior and commitments from units significantly before the dispatch, while the hour-ahead 5-minute
markets are a near-real-time response to actual load behavior. Often, a component producing electricity
may desire to reserve some capacity to contribute on the 5-minute market, increasing its economic
viability. This multi-level market feature would increase the accuracy and flexibility of HERON to
consider such systems.

A subject of recent interest is ancillary services and markets provided by electricity producers.
These ancillary markets, such as capacity, spinning reserve, and frequency stability, could potentially
highlight the value of some components that is not captured in a simple market strategy. Similarly,
economic policy can often greatly influence the most economical system configuration; a simple way to
include such policies in HERON would likewise expand its effectiveness for such systems.

One of the assumptions of the generic dispatch optimization algorithm in HERON for regulated
cases is that the load demand must be met. Often, this is not strictly true in terms of governance; rather,

 36

the load demand must be met to a particular degree of satisfaction and given a certain tolerance for risk.
Extending HERON to consider robust optimization as a method to address risk-weighted
technoeconomic dispatch would allow it to analyze such system configurations.

 37

7. REFERENCES

1. C. Rabiti, A. S. Epiney, P. W. Talbot, J. S. Kim, S. Bragg-Sitton, A. Alfonsi, A.
Yigitoglu, S. Greenwood, S. M. Cetiner, F. Ganda, G. Maronati, “Status Report on
Modeling and Simulation Capabilities for Nuclear-Renewable Hybrid Energy
Systems,” Idaho National Laboratory, September 2017, INL/EXT-17-43441.

2. A. Epiney, C. Rabiti, P. Talbot, A. Alfonsi, “Economic analysis of a nuclear hybrid
energy system in a stochastic environment including wind turbines in an electricity
grid”, Applied Energy, accepted 28 November 2019.

3. A. Epiney, C. Rabiti, P. W. Talbot, J. S. Kim, J. D. Richards, S. Bragg-Sitton, “Case Study:
Nuclear-Renewable-Water Integration in Arizona”, Idaho National Laboratory, September
2018, INL/EXT-18-51359.

4. A. S. Epiney, J. Chen, C. Rabiti, “Status on the Development of a Modeling and
Simulation Framework for the Economic Assessment of Nuclear Hybrid Energy
Systems (FY 16)”, Idaho National Laboratory, September 2016, INL/EXT-16-39832.

5. A. S. Epiney, R. A. Kinoshita, J. S. Kim, C. Rabiti, M. S. Greenwood, “Software
development infrastructure for the HYBRID modeling and simulation project”, INL
report INL/EXT-16-40004, September 2016.

6. J. S. Kim, H. E. Garcia “Nuclear-Renewable Hybrid Energy System for Reverse
Osmosis Desalination Process,” Transactions of the American Nuclear Society.
2015;112:121-4.

7. J. S. Kim, J. Chen J, H. E. Garcia. “Modeling, control, and dynamic performance
analysis of a reverse osmosis desalination plant integrated within hybrid energy
systems,” Energy. 2016;112:52-66.

8. C. Rabiti, A. Alfonsi, J. Cogliati, D. Mandelli, R. Kinoshita, S. Sen, C. Wang, J. Chen,
"RAVEN User Manual," INL/EXT-15-34123, Printed March 2017.

9. J. Chen, C. Rabiti, “Synthetic wind speed scenarios generation for probabilistic analysis
of hybrid energy systems”, Energy 120, 2017, p. 507-517.

10. P. Talbot. C. Rabiti, A. Alfonsi, C. Krome, M. R. Kunz, A. Epiney, C. Wang, D.
Mandelli, “Correlated Synthetic Time Series Generation using Fourier and ARMA”,
International Journal of Energy Research, accepted 18 October 2019.

11. N. Stauff, G. Maronati, R. Ponciroli, F. Ganda, T. Kim, T. Taiwo, A. Cuadra, M. Todosow, P.
Talbot, C. Rabiti, B. Dixon, S. Kim, “Daily Market Capability and Results”, ANL/NSE-19/5,
April 2019.

12. A. S. Epiney, C. Rabiti, A. Alfonsi, P. Talbot, F. Ganda, “Report on the Economic
Optimization of a Demonstration Case for a Static N-R HES Configuration using
RAVEN,” Idaho National Laboratory, April 2017, INL/EXT-17-41915.

13. Nicolas E. Stauff, R. Ponciroli, T. K. Kim, T. A. Taiwo, “Economic Impact of Flexible Nuclear
Operation Estimated with EDGAR Optimization Code,” NURER 2018, Sept 30 – Oct 3, 2018,
Jeju, Korea.

14. S. M. Cohen, J. Becker, D. A. Bielen, M. Brown, W. J. Cole, K. P. Eurek, A. Frazier, et al,
“Regional Energy Deployment System (ReEDS) Model Documentation: Version 2018”,
National Renewable Energy Laboratory, NREL/TP-6A20-72023, 2019.

15. G. van Rossum, “Python tutorial”, Technical Report CS-R9526, Centrum voor Wiskunde en
Informatica (CWI), Amsterdam, May 1995.

16. K. Frick, P. Talbot, D. Wendt, R. Boardman, C. Rabiti, S. Bragg-Sitton, D. Levie, B.
Frew, M. Ruth, A. Elgowainy, T. Hawkins, “Evaluation of Hydrogen Production
Feasibility for a Light Water Reactor in the Midwest,” Idaho National Laboratory,
September 2019, INL/EXT-19-55395.

 38

17. https://about.gitlab.com, “Code, test, and deploy together with GitLab open source git
repo management software”, Retrieved 2016-Februrary-22

18. PJM, “Energy Market”, online resource, accessed at https://www.pjm.com/markets-and-
operations/energy.aspx, Retrieved 2019-12-13.

 39

8. APPENDIX: Software Requirements Specification and
Traceability Matrix

 40

MANUAL
SPC-xxxx

Revision 0

Printed December 19, 2019

HERON Software Requirements
Specification and Traceability Matrix

Paul Talbot, Abhinav Gairola, Prerna Prateek, Andrea Alfonsi, Cristian Rabiti

Prepared by
Idaho National Laboratory
Idaho Falls, Idaho 83415

The Idaho National Laboratory is a multiprogram laboratory operated by
Battelle Energy Alliance for the United States Department of Energy
under DOE Idaho Operations Office. Contract DE-AC07-05ID14517.

Approved for unlimited release.

41

Issued by the Idaho National Laboratory, operated for the United States Department of Energy
by Battelle Energy Alliance.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

42

SPC-
xxxx

Revision 0

Printed December 19, 2019

HERON Software Requirements Specification and
Traceability Matrix

Paul Talbot, Abhinav Gairola, Prerna Prateek, Andrea Alfonsi, Cristian Rabiti

43

44

Contents

1 Introduction . 7
 1.1 Dependencies and Limitations . 7
2 References . 8
3 Definitions and Acronyms . 9
 3.1 Definitions . 9
 3.2 Acronyms . 9
4 System Requirements: HERON . 11
 4.1 Minimum Requirements . 11
 4.1.1 Minimum Requirements . 11
 4.1.1.1 H-M-1 . 11
 4.1.1.2 H-M-2 . 11
 4.1.1.3 H-M-3 . 11
 4.2 Functional Requirements . 11
 4.2.1 Framework, I/O, Execution Control . 11
 4.2.1.1 H-F-1 . 11
 4.2.1.2 H-F-2 . 11
 4.3 Usability Requirements . 12
 4.3.1 Economical Analysis . 12
 4.3.1.1 H-EA-1 . 12
 4.3.1.2 H-EA-2 . 12
 4.3.1.3 H-EA-3 . 12
 4.4 System Interfaces . 12
 4.4.1 Interface with external applications . 12
 4.4.1.1 H-SI-1 . 12
 4.5 System Operations . 12
 4.5.1 Human System Integration Requirements . 12
 4.5.2 Maintainability . 13
 4.5.3 Human System Integration Requirements . 13
 4.6 Information Management . 13
5 Verification . 14
6 HERON:SYSTEM REQUIREMENTS . 15
 6.1 Requirements Traceability Matrix . 15
 6.1.1 Minimum Requirements . 15
 6.1.2 Functional Requirements . 15
 6.1.3 Usability Requirements . 16
 6.1.4 System Interfaces . 16

45

46

1 Introduction

The HERON plug-in is a generic tool for techno-economic analysis of resource distribution system in

Regulated and Deregulated Market.

The plug-in is aimed to assist in component sizing optimization using stochastic optimization of
resource allocation.

This document is aimed to report and explain the HERON software requirements.

1.1 Dependencies and Limitations

The plug-in should be designed with the fewest possible constraints. Ideally the plug-in (in con-

junction with RAVEN) should run on a wide variety of evolving hardware, so it should follow well-adopted
standards and guidelines. The software should run on any POSIX compliant system (including Windows
POSIX emulators such as MinGW)l.

In order to be functional, HERON depends on the following software/libraries.

• RAVEN (raven.inl.gov) and all its dependencies (listed in “RAVEN Software Design

Description” - SDD-513)

• Python dill-0.3.1.1

47

2 References

• ASME NQA 1 2008 with the NQA-1a-2009 addenda, “Quality Assurance Requirements for

Nuclear Facility Applications,” First Edition, August 31, 2009.

• ISO/IEC/IEEE 24765:2010(E), “Systems and software engineering Vocabulary,” First Edi-
tion, December 15, 2010.

• LWP 13620, “Managing Information Technology Assets”

• SDD-513, “ RAVEN Software Design Description ”

• PLN-5552, “ RAVEN and RAVEN Plug-ins Software Quality Assurance and Maintenance
and Operations Plan ”

48

3 Definitions and Acronyms

3.1 Definitions

• Baseline. A specification or product (e.g., project plan, maintenance and operations [M&O]
plan, requirements, or design) that has been formally reviewed and agreed upon, that there-
after serves as the basis for use and further development, and that can be changed only by
using an approved change control process. [ASME NQA-1-2008 with the NQA-1a-2009
addenda edited]

• Validation. Confirmation, through the provision of objective evidence (e.g., acceptance
test), that the requirements for a specific intended use or application have been fulfilled.
[ISO/IEC/IEEE 24765:2010(E) edited]

• Verification.

– The process of evaluating a system or component to determine whether the products of
a given development phase satisfy the conditions imposed at the start of that phase.

– Formal proof of program correctness (e.g., requirements, design, implementation re-
views, system tests). [ISO/IEC/IEEE 24765:2010(E) edited]

3.2 Acronyms

API Application Programming Interfaces

ASME American Society of Mechanical Engineers

CR Change Request

DOE Department of Energy

HDF5 Hierarchical Data Format (5)

LWRS Light Water Reactor Sustainability

NEAMS Nuclear Energy Advanced Modeling and Simulation

IES Integrated Energy Systems

INL Idaho National Laboratory

IT Information Technology

M&O Maintenance and Operations

49

NQA Nuclear Quality Assurance

POSIX Portable Operating System Interface

PP Post-Processor

QA Quality Assurance

RAVEN Risk Analysis and Virtual ENviroment

ROM Reduced Order Model

SDD System Design Description

XML eXtensible Markup Language

50

4 System Requirements: HERON

4.1 Minimum Requirements

4.1.1 Minimum Requirements

4.1.1.1 H-M-1

Computer: Any POSIX (and POSIX-like) system

4.1.1.2 H-M-2

RAM: 2 GB per core execution (depending on the type of analysis and data genarated)

4.1.1.3 H-M-3

Language: Python 3.x

4.2 Functional Requirements

4.2.1 Framework, I/O, Execution Control

4.2.1.1 H-F-1

The HERON plug-in shall allow support for user-defined instructions for controlling the execution
stages of the economical analysis.

4.2.1.2 H-F-2

The HERON plug-in shall allow for user-defined output types for simulation data.

51

4.3 Usability Requirements

4.3.1 Economical Analysis

4.3.1.1 H-EA-1

The HERON plug-in shall support the automated RAVEN workflow generation for grid energy system
technoeconomic analysis

4.3.1.2 H-EA-2

The HERON plug-in shall support the grid system dispatch optimization on stochastic signals

4.3.1.3 H-EA-3

The HERON plug-in shall support the regulated and deregulated market analysis

4.4 System Interfaces

4.4.1 Interface with external applications

4.4.1.1 H-SI-1

The HERON plug-in shall be able to be initialized via input files.

4.5 System Operations

4.5.1 Human System Integration Requirements

The command line interface shall support the ability to toggle any supported coloring schemes on or
off pursuant to section 508 of the Rehabilitation Act of 1973.

52

4.5.2 Maintainability

• The latest working version (defined as the version that passes all tests in the current regres-
sion test suite) shall be available at all times through the repository host provider.

• Flaws identified in the system shall be reported and tracked in a ticket or issue based sys-
tem. The technical lead or any COB member will determine the severity and priority of all
reported issues. The technical lead will assign resources at his or her discretion to resolve
identified issues.

• The software maintainers will entertain all proposed changes to the system in a timely man-
ner (within two business days).

• The HERON plug-in in its entirety will be made available for licensees in the INL GITLAB
system.

4.5.3 Human System Integration Requirements

The regression test suite will cover at least 80% of all lines of code at all times. The results of the
regression tests will be stored in the Continuous Integration System.

4.6 Information Management

The HERON plug-in in its entirety will be made available on an appropriate protected repository
hosting site (i.e. INL GITLAB). Backups and security services will be provided by the hosting service.

53

5 Verification

The regression test suite shall employ several verification tests using comparison against analytic

solutions (when possible) and convergence rate analysis.

54

6 HERON:SYSTEM REQUIREMENTS

6.1 Requirements Traceability Matrix

This section contains all of the requirements, requirements’ description, and requirement test cases. The

requirement tests are automatically tested for each CR (Change Request) by the CIS (Contin- uous
Integration System).

6.1.1 Minimum Requirements

Requirment ID Requirment Descrip-
tion

Test(s)

H-M-1 Computer: Any
POSIX (and POSIX-
like) system

1)“RAVEN User Manual”, INL/EXT-15-
34123 2)Continous Integration System

H-M-2 RAM: 2 GB per core
execution (depending
on the type of analysis
and data genarated)

1)“RAVEN User Manual”, INL/EXT-15-
34123 2)Continous Integration System

H-M-3 Language: Python 3.x 1)“RAVEN User Manual”, INL/EXT-15-
34123 2)Continous Integration System

Minimum Requirements

6.1.2 Functional Requirements

Requirment ID Requirment Descrip-
tion

Test(s)

H-F-1 The HERON plug-in 1)/Users/talbpw/projects/heron/tests/-
 shall allow support for First/myFirst.xml
 user-defined instruc-
 tions for controlling
 the execution stages
 of the economical
 analysis.

55

H-F-2 The HERON plug-in
shall allow for user-
defined output types
for simulation data.

1)/Users/talbpw/projects/heron/tests/-
First/myFirst.xml

Framework, I/O, Execution Control

6.1.3 Usability Requirements

Requirment ID Requirment Descrip-
tion

Test(s)

H-EA-1 The HERON plug-in
shall support the
automated RAVEN
workflow generation
for grid energy sys-
tem technoeconomic
analysis

1)/Users/talbpw/projects/heron/tests/-
First/myFirst.xml

H-EA-2 The HERON plug-in
shall support the grid
system dispatch opti-
mization on stochastic
signals

1)/Users/talbpw/projects/heron/tests/Sec-
ond/mySecond.xml

H-EA-3 The HERON plug-in
shall support the reg-
ulated and deregulated
market analysis

1)/Users/talbpw/projects/heron/test-
s/Third/myThird 1.xml

Economical Analysis

6.1.4 System Interfaces

Requirment ID Requirment Descrip-
tion

Test(s)

H-SI-1 The HERON plug-in
shall be able to be ini-
tialized via input files.

1)/Users/talbpw/projects/heron/tests/-
First/myFirst.xml

Interface with external applications

56

Idaho National laboratory

57

9. APPENDIX: Configuration Items List

58

The INL is a U.S. Department of Energy National Laboratory
operated by Battelle Energy Alliance.

2Document ID: LST-xxxx
Revision ID: 0

Effective Date: xx/xx/2019

List

HERON Configuration
Items List

59

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

RAVEN CONFIGURATION ITEMS LIST

Identifier:
Revision:
Effective Date:

LST-xxxx

 1
 xx/xx/2019 Page: 59 of 65

Applicability: Configuration Items List eCR Number:
Manual:

REVISION LOG

Rev. Date Affected Pages Revision Description

0 07/31/2019 All Creation of the Configuration Items List

60

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

RAVEN CONFIGURATION ITEMS LIST

Identifier:
Revision:
Effective Date:

LST-xxxx

 1
 xx/xx/2019 Page: 60 of 65

CONTENTS

1. PURPOSE .. 61

2. SCOPE .. 61

3. RESPONSIBILITIES ... 61

4. LIST .. 61

4.01 Software, Hardware, and Documentation ... 61

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

RAVEN CONFIGURATION ITEMS LIST

Identifier:
Revision:
Effective Date:

LST-xxxx

 1
 xx/xx/2019 Page: 61 of 65

61

10. PURPOSE
This document identifies all HERON plug-in configuration items (CIs) (see def.). This
document also identifies the level designation needed to modify CIs that can potentially
affect the ability of HERON plug-in to comply with NQA-1.

11. SCOPE
This list is intended to identify all CIs for HERON plug-in, to provide a document to submit
into the EA repository, and an aid to identify how severe a change to HERON plug-in will
be.

12. RESPONSIBILITIES
The Asset Owner is responsible for maintaining this list and, when necessary, updating the
EA repository when the configuration items list changes.

The Asset Owner is also responsible for maintaining configuration management in
accordance with PLN-5552, “RAVEN and RAVEN Plug-ins Software Quality Assurance
Plan.”

13. LIST

13.1 Software, Hardware, and Documentation

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

RAVEN CONFIGURATION ITEMS LIST

Identifier:
Revision:
Effective Date:

LST-xxxx

 1
 xx/xx/2019 Page: 62 of 65

62

Table 1. Software, Hardware, and Documentation

Configuration
Item

Component Description Repository/Location

Application
Source Code

HERON plug-in Source Code for HERON plug-in GITLAB

 RAVEN Source Code for the RAVEN code.
The HERON requires RAVEN to be
functional.

GITHUB

System Software Python 3.x HERON Software language
(Current versions are maintained
in the EA repository)

Enterprise Architecture (EA) (put
code here xxxxx)

 Unix-compatible
systems

Any compatible Unix system (or
Unix-like)

N/A

Support Software GITLAB CI Continuous Integration,

Verification, Enhancement, and
Testing. This is the continuous
integration system used by HERON
for automatic testing.

GITLAB

Installed in all the Regression
Automatic Test Machines (Test
Servers)

Hardware Test Servers These servers are used to test the
HERON functionality. It will use a
“snapshot” of live data to perform
the tests. If testing on the server
fails, that version of HERON is sent
back to the Development Server for
further configuration.
(Complete and up-to-date list of
servers is maintained in EA
repository)

General Purpose Enclave
EROB

 Workstations
Laptops
Personal Computer

These consist of computer terminals
that the end users use to access the
software.

N/A

Documentation SDD-xxxxxx HERON Safety Software
Determination

EDMS

 ALL-000853 HERON Quality Level
Determination

EDMS

 Entry #xxxxx HERON Enterprise Architecture EDMS
 PLN-5552 RAVEN and RAVEN Plug-ins

Software Quality Assurance Plan
EDMS

 PLN-5552 RAVEN and RAVEN Plug-ins
Configuration Management Plan

EDMS

 PLN-5552 RAVEN Software Test Plan and
V&V

EDMS

 PLN-5552 RAVEN and RAVEN Plug-ins
Asset Maintenance Plan

EDMS

 SPC-2366 RAVEN Software Requirements
Specification and Traceability
Matrix

EDMS

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

RAVEN CONFIGURATION ITEMS LIST

Identifier:
Revision:
Effective Date:

LST-xxxx

 1
 xx/xx/2019 Page: 63 of 65

63

 SDD-513 RAVEN Software Design
Description

EDMS

 SPC-xxxx HERON Software Requirements
Specification and Traceability
Matrix

EDMS

 SDD-513 HERON Software Design
Description

EDMS

 INL/EXT-15-34123 RAVEN User Manual GITHUB
 INL/EXT-18-44465 RAVEN Theory Manual GITHUB
 INL/EXT-16-38178 RAVEN User Guide GITHUB
 INL/EXT-xx-xxxxx HERON User Manual GITLAB

	21766

